Influence of ionic strength and substratum hydrophobicity on the co-adhesion of oral microbial pairs.

نویسندگان

  • R Bos
  • H C van der Mei
  • H J Busscher
چکیده

Co-adhesion between oral microbial pairs (i.e. adhesion of a planktonic microorganism to a sessile organism adhering to a substratum surface) has been described as a highly specific interaction, mediated by stereochemical groups on the interacting microbial cell surfaces, and also as a non-specific, critical colloid-chemical interaction. In a colloid-chemical approach, microbial co-adhesion is considered as an interplay between, amongst others, hydrophobic and electrostatic interactions. The aim of this paper was to determine the influence of ionic strength on the co-adhesion of Streptococcus oralis 34 to either Actinomyces naeslundii T14V-J1 or its mutant strain 5951 adhering to glass in a parallel-plate flow chamber. To this end, the ionic strength of the suspension was varied by the addition of KCl. Another aim was to investigate whether substratum hydrophobicity affected the co-adhesion between the organisms by allowing the sessile organisms (in this case the actinomyces) to adhere either to hydrophilic or to hydrophobic, dimethyldichlorosilane (DDS)-coated glass. The kinetics of co-adhesion of S. oralis 34 to the actinomyces decreased with increasing ionic strength, expressed as the ratio, chi, between the local and non-local initial deposition rates of the streptococci in the vicinity of, or far away from, the adhering actinomyces, respectively. In a stationary end-point of co-adhesion, ionic strength appeared not to be a determinant factor for the co-adhesion of S. oralis 34 with A. naeslundii 5951, either when the actinomyces were adhering to hydrophilic glass or to hydrophobic, DDS-coated glass. However, for S. oralis 34 co-adhering in a stationary end-point with A. naeslundii T14V-J1 in the high-ionic-strength (250 mM KCl) suspension, co-adhesion was far less on hydrophobic, DDS-coated glass than on hydrophilic glass. It is possible that the hydrophobic fibrils on A. naeslundii T14V-J1 bearing the lectin responsible for co-adhesion were immobilized in the latter case by adsorption to the hydrophobic substratum, making them less available for interaction with the streptococci.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Physicochemistry and Ionic Strength Affects eDNA’s Role in Bacterial Adhesion to Abiotic Surfaces

Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liqu...

متن کامل

The Relationship between Cell Surface Hydrophobicity and Antibiotic Resistance of Streptococcal Strains Isolated from Dental Plaque and Caries

Objective Bacterial adhesion is governed by specific and nonspecific interactions such as hydrophobicity. Hydrophobic interactions play a role in the adherence of microorganisms to a wide variety of surfaces and facilitate biofilm formation due to bacterial adhesion. In this article the relation between cell surface hydrophobicity and antibiotic resistance was studied. Materials and Methods ...

متن کامل

Hydrophobic and electrostatic cell surface properties of Cryptosporidium parvum.

Microbial adhesion to hydrocarbons and microelectrophoresis were investigated in order to characterize the surface properties of Cryptosporidium parvum. Oocysts exhibited low removal rates by octane (only 20% on average), suggesting that the Cryptosporidium sp. does not demonstrate marked hydrophobic properties. A zeta potential close to -25 mV at pH 6 to 6.5 in deionized water was observed for...

متن کامل

Differences between chemisorbed and physisorbed biomolecules on particle deposition to hydrophobic surfaces.

This study examines differences between chemisorbed and physisorbed biomolecules on bacterial adhesion to both hydrophobic and hydrophilic surfaces that are biologically nonspecific. Bacteria-sized latex microspheres were used as a simplified model in order to study these factors that affect microbial adhesion. Two biomolecules (protein A, poly-D-lysine) were covalently bound to microspheres in...

متن کامل

Retention of bacteria on a substratum surface with micro-patterned hydrophobicity.

Bacteria adhere to almost any surface, despite continuing arguments about the importance of physico-chemical properties of substratum surfaces, such as hydrophobicity and charge in biofilm formation. Nevertheless, in vivo biofilm formation on teeth and also on voice prostheses in laryngectomized patients is less on hydrophobic than on hydrophilic surfaces. With the aid of micro-patterned surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 142 ( Pt 9)  شماره 

صفحات  -

تاریخ انتشار 1996